Что такое механические свойства древесины?

Столярные и плотничные работы
Коршевер Наталья Гавриловна

Содержание
  1. Механические свойства древесины
  2. Физические свойства древесины
  3. Физические и механические свойства
  4. Механические «рулевые»
  5. ЛЕКЦИЯ № 4. Свойства древесины
  6. Влажность древесины и свойства, связанные с ее изменением
  7. Плотность древесины. Тепловые свойства древесины
  8. Электрические и акустические свойства древесины
  9. Технологические свойства древесины
  10. ЛЕКЦИЯ № 6. Механические свойства металлов
  11. Основные механические свойства материалов
  12. Механические свойства серебряно-медных сплавов
  13. Основные свойства древесины
  14. Свойства, определяющие общий вид древесины
  15. Износостойкость и гибкость древесины
  16. Усушка, разбухание и коробление пиломатериала
  17. Пороки формы ствола
  18. Пороки строения древесины
  19. Искаженное месторасположение древесного волокна и годичных слоёв
  20. Нерегулярные анатомические образования
  21. Необычные отложения в древесине
  22. Диэлектрические свойства древесины
  23. Физические и механические свойства древесины
  24. По степени влажности древесину различают
  25. Свойства древесины — американские стандарты
  26. Прочность древесины
  27. Стандартная плотность древесины
  28. Соединение древесины
  29. Цвет древесины
  30. Предел прочности при кручении (высушенной древесины)
  31. Модуль упругости (высушенной) древесины
  32. Максимальная прочность при сжатии (высушенная) древесины
  33. Прочность (высушенная) древесины
  34. Твёрдость (не высушенная)
  35. Стойкость древесины
  36. Стойкость древесины к воздействию морских древоточцев
  37. Огнестойкость, НПБ — Воспламеняемость древесины
  38. НПБ – Индекс распространения пламени древесины
  39. НПБ — Коэффициент дымообразования древесины
  40. Напряжение древесины
  41. Ударостойкость древесины
  42. Огнестойкость, зона тушения
  43. Технологические способы хищения
  44. ТЕХНОЛОГИЧЕСКИЕ ЭНЕРГОУСТАНОВКИ
  45. Технологические допуски

Механические свойства древесины

Механические свойства древесины

Механические свойства древесины более важны, так как от них зависят прочность и долговечность сооружений и изделий из дерева.

Механическая прочность древесины – это ее возможность противостоять различным статическим и динамическим нагрузкам.

По направлению действия нагрузок различают прочность на сжатие, изгиб, скалывание (сдвиг), растяжение (рис. 7). При этом предел прочности древесины на сжатие и растяжение при направлении нагрузки вдоль волокон значительно выше, нежели при направлении нагрузки поперек волокон.

Рис. 7. Испытание прочности древесины по направлению нагрузки: 1 – вдоль волокон; 2 – поперек волокон радиально; 3 – поперек волокон тангентально.

Механическая прочность древесины зависит от ее физических свойств: увеличение влажности снижает прочность, а плотная древесина более прочна, чем легкая и рыхлая.

Пластичность– способность деревянной детали изменять форму под воздействием нагрузки и сохранять эту форму после снятия приложенной нагрузки. Это свойство имеет значение при изготовлении гнутых деталей: важно знать, что с увеличением влажности и температуры древесины ее пластичность увеличивается; поэтому детали, предназначенные для гнутья, обрабатывают горячей водой или паром.

Высокой пластичностью (по убывающей) обладает древесина бука, вяза, дуба, ясеня.

Хвойные породы древесины пластичностью, достаточной для гнутья деталей, не обладают вследствие прямолинейной структуры волокон.

Твердость древесины обусловлена ее способностью сопротивляться внедрению инородных тел. По этому признаку древесину разделяют на твердую – бук, дуб, клен, ясень, вяз, лиственница (самые твердые – самшит и акация) и мягкую – липа, ель, сосна, ольха.

Твердость определяет еще одно механическое свойство древесины – ее износостойкость, способность противостоять трению. Здесь имеется прямая взаимосвязь: чем тверже древесина, тем выше показатель ее износостойкости.

Данный текст является ознакомительным фрагментом.

Физические свойства древесины
К физическим свойствам древесины относятся ее плотность, влажность, теплопроводность, звукопроводность, электропроводность, стойкость к коррозии (то есть способность противостоять действию агрессивной среды), а также ее декоративные

Физические свойства древесины

Механические свойства древесины
Механические свойства древесины более важны, так как от них зависят прочность и долговечность сооружений и изделий из дерева.Механическая прочность древесины – это ее возможность противостоять различным статическим и динамическим

Физические и механические свойства

Физические и механические свойства
Плотность стекол зависит от компонентов, входящих в их состав. Так, стекломасса, в больших количествах включающая оксид свинца, более плотная по сравнению со стеклом, состоящим, помимо прочих материалов, и из оксидов лития, бериллия или

Механические «рулевые»

Механические «рулевые»
На всяком корабле есть рулевой. Он держит в руках штурвал, поворачивает им руль, корабль меняет направление. У торпеды есть тоже рули, и ими также нужно управлять. Если этого не делать, торпеда может выскочить на поверхность или, наоборот, нырнуть

ЛЕКЦИЯ № 4. Свойства древесины

ЛЕКЦИЯ № 4. Свойства древесины

1. Цвет, блеск и текстура древесины
Цвет древесины зависит от климатических условий произрастания дерева. В умеренном климате древесина почти всех пород окрашена бледно, а в тропическом имеет яркую окраску. Влияние климатического фактора

Влажность древесины и свойства, связанные с ее изменением

2. Влажность древесины и свойства, связанные с ее изменением
В свежесрубленной древесине, как правило, содержится большое количество воды и в дальнейшем в зависимости от условий хранения оно может увеличиваться или уменьшаться, или оставаться на прежнем уровне. Но в

Плотность древесины. Тепловые свойства древесины

3. Плотность древесины. Тепловые свойства древесины
Плотность древесины – это масса единицы объема материала, выражающаяся в г/см 3 или кг/м 3. Существует несколько показателей плотности древесины, которые зависят от влажности. Плотность древесного вещества – это масса

Электрические и акустические свойства древесины

4. Электрические и акустические свойства древесины
Как показали многочисленные исследования электрических свойств древесины, ее электропроводность, т. е. способность проводить электрический ток, находится в обратной зависимости от ее электрического сопротивления.

Технологические свойства древесины

6. Технологические свойства древесины
Технологические свойства: ударная вязкость, твердость, износоустойчивость, способность удерживать шурупы, гвозди и другие крепления, а также обрабатываемость режущими инструментами.Ударная вязкость древесины – это ее способность

ЛЕКЦИЯ № 6. Механические свойства металлов

ЛЕКЦИЯ № 6. Механические свойства металлов

1. Деформация и разрушение
Приложение нагрузки вызывает деформацию. В начальный момент нагружение, если оно не сопровождается фазовыми (структурными) изменениями, вызывает только упругую (обратимую) деформацию. По достижении

2. Механические свойства металлов
Механические свойства металлов определяются следующими характеристиками: предел упругости ?Т, предел текучести ?Е, предел прочности относительное удлинение ?, относительное сужение ? и модуль упругости Е, ударная вязкость, предел

Основные механические свойства материалов

4.1. Основные механические свойства материалов
Изготовление ювелирных изделий – процесс многоступенчатый и начинается всегда с литья, т. е. получения сплава в жидком состоянии, заливки его в форму, кристаллизации. В отдельных случаях сплав используют в виде

Механические свойства серебряно-медных сплавов

10.2. Механические свойства серебряно-медных сплавов
Механические свойства сплавов серебра существенно зависят от содержания в них меди. Так, увеличение концентрации меди с 5 % (СрМ 950) до 20 % (СрМ 800) приводит к повышению прочности на 30 %, а твердости – на 60 % при

Еще с древнейших времен, человек не мог обходиться без древесины. Не растратила она своего значения и на сегодняшний день, невзирая на то, что пришло на смену много современных и передовых материалов, которые вытеснили лесоматериалы из некоторых сфер ее применения. Однако, появились другие направления и сферы применения, новые технологии, где изделия из дерева просто незаменимы.

Основные свойства древесины

Как и многие стройматериалы, древесный материал отличается по характерным свойствам и особенностям. Свойства могут быть как позитивными, так и негативными показателями. Эти свойства обусловлены породой лесоматериалов.

Свойства древесины подразделяется на:

Никакой строительный материал не располагает такими технологическими и декоративными свойствами, как изделия из дерева. Она податлива при обработке. Прочный и лёгкий материал, долгое время сохраняющий тепло и нежный запах. Но, как и всякий материал она имеет положительные и отрицательные свойства.

Свойства, определяющие общий вид древесины

К таким свойствам относятся:

Большая часть, до 90 % объема дерева, это — ствол, в состав которого входят:

Технические свойства характеризуют следующие показатели:

Соразмерность веса пиломатериала к его объёму и есть плотность. Устанавливается плотность в кг/м3, и напрямую подчиняется влажности.

Плотность подразделяют на:

На твёрдость влияют следующие показатели:

Твердость у одного ствола может быть разной: в зависимости от того, какой применяется распил. Торцы твёрже чем тангентальная и радиальная поверхность.

Износостойкость и гибкость древесины

К таким свойствам относятся следующие показатели:

Влажность — это процентное соотношение количества влаги в определённом объёме древесного материала, к такому же объёму совершенно сухого материала. Свойства по влажности у каждой породы индивидуальные.

Влажность подразделённая по степеням:

Усушка, разбухание и коробление пиломатериала

Разбухание — одно из негативных свойств древесины. Хотя в отдельных случаях разбухание играет существенную роль: создает уплотнение соединениям в лодках, бочонках и кадках.

Абсолютное значение, измеряемое соотношением веса к объему. Плотность напрямую зависит от разновидности породы и количества влаги. Чем меньше влажность, тем ниже плотность.

Свойство древесины пропускать тепло от корней до кроны. На качество теплопроводности влияют такие факторы:

Особенное свойство лесоматериалов — пропускать звук. Звукопроницаемость у древесины повыше, чем у некоторых материалов. Этот показатель необходимо принимать во внимание в строительстве, где крайне важна звукоизоляция стен и столярных изделий.

Положительное свойство пиломатериалов пропускать ток. На электропроводность влияют влажность, порода, направление волокон и температура. Сухая древесина не пропускает электроток, что даёт возможность использовать ее как изоляционный материал.

https://youtube.com/watch?v=67L8LBFaHeg%3Ffeature%3Doembed%26wmode%3Dopaque

Степень увлажненности пиломатериалов, это — показатель качества и износостойкости изделий из древесины. Отличительное свойство: чем меньше содержание влажности, тем дольше она не подвергается гниению.

6. Коррозионная стойкость.

Отсутствие коррозии — немаловажное свойство у изделий, изготовленных из древесины. Особенно это касается тех изделий, которые подвергаются эксплуатации на открытом воздухе.

7. Цвет, блеск, запах и текстура.

Данные свойства позволяют зрительно определять породу древесины и имеют чисто художественное значение.

Важные свойства, влияющие на устойчивость и надёжность строений и деревянных изделий.

Сопротивление древесных материалов к разрушениям под воздействием механических усилий.

Это свойство зависит от сопротивления древесного материала к проникновению твердых тел. Чем тверже древесина, тем сложнее она поддаётся обработке.

Поглощение ударов без нарушений целостности.

Смотрите также:   Что это такое и из чего он состоит?

https://youtube.com/watch?v=NdvT3XoiHw8%3Ffeature%3Doembed%26wmode%3Dopaque

Это продольные разрывы, возникающие под воздействием внутренних напряжений.

Трещины подразделяют по следующим свойствам:

Радиальные трещины внутри ствола дерева. Наблюдаются у всех пород, особенно этим страдает перестоялый древостой. Трещины появляются по мере роста дерева и представляют прерывающиеся разломы по длине сортамента.

Отслаивание древесного волокна внутри ядра и отслоение спелой древесины у растущего дерева. Отлупные трещины можно встретить у каждой породы. До конца не установлены причины возникновения таких трещин.

Продольные разрывы извне на стволе молодого дерева. В основном, морозные трещины преобладают у лиственных пород и очень редко у хвойных. Трещины появляются при резких перепадах зимних температур.

Появляются под воздействием неравномерной усушки и выявляются при распиловке сортамента.

Трещины — основная причина понижения прочности лесоматериалов, используемых в строительстве. Кроме того, трещины содействуют вторжению грибных заболеваний и попаданию влаги внутрь материала.

Пороки формы ствола

Стволы деревьев также обладают определёнными пороками:

Ствол дерева, во время роста, постепенно уменьшается в диаметре от нижней части к кроне. Когда, при каждом метре роста, диаметр ствола убывать больше чем на 1 см, то это — сбежистость.

Лиственные породы больше подвержены такому пороку нежели хвойные породы Сбежистость больше всего проявляется у деревьев растущих на свободе или в мелколесье. Чем гуще лес, тем поменьше на деревьях сбежистости. Данный порок повышает величину отходов и снижает прочность.

Если диаметр ствола в нижней части дерева превышает диаметр того же ствола на высоте не менее метра в 1,2 раза, то это называется закомелистостью.

Ствол дерева имеет форму эллипса, а максимальный диаметр больше минимального в 1,5 раза. Овальность вызывает у дерева крен и изменяет строения древесины.

Локальное утолщение появляется в результате негативного воздействия:

Все древесные породы страдают искривлением стволов. Простая кривизна имеет один изгиб, сложная — несколько изгибов ствола.

Кривизна относится к отрицательным свойствам древесины.

Пороки строения древесины

Пороки подразделяются на группы. В группе находятся определённые виды пороков.

Искаженное месторасположение древесного волокна и годичных слоёв

Наклонное положение волокон значительно понижает прочность древесины, усиливает усушку сортамента вдоль и является поводом появления винтовой искривлённости и закручивания пиломатериалов. Наклон волокон существенно усложняет обработку пиломатериала и уменьшает потенциал древесины к изгибу.

Это волнистое и хаотичное распределение волокон.

Свилеватость уменьшает прочность на растяжение, повышает ударную вязкость и противодействие раскалыванию. Механическое воздействие на свилеватый материал очень затруднён. Однако, у этого порока есть и свои положительные свойства — красивая текстура.

Искажение годичных слоёв около сучков и наростов.

В склонённых и кривых стволах формируется редкостная древесина, которая получила название реактивной. Этот изъян происходит под воздействием силы тяжести, которая вызывает переназначение веществ и подавляет процесс роста.

Крен ухудшает уровень качества древесного сырья, используемого в целлюлозно-бумажной промышленности.

Тяговая древесина усложняет обработку материалов. Во время обработки, образуются мохнатые и замшелые поверхности, которые, отделившись во время резания, заполняют углубление и препятствуют вращению пил.

Сучки — основной, сорт определяющий, порок лесоматериалов. Сучки классифицируют как значительный порок, снижающий стоимость древесного материала.

К сучкам относят оставшиеся основания ветвей. Неважно в каких количествах, но сучки всегда находятся в лесоматериалах. Количество сучков, находящихся в стволе, учитывая их состояние, размеры и распределение по длине, зависят от древесной породы, условий место произрастания, климата, густоты лесонасаждения и прочих факторов.

По уровню зарастания, сучки делятся на два типа:

Нерегулярные анатомические образования

Тёмная внутренняя часть ствола дерева — это ложное ядро. Кромка ложного ядра не соприкасается с границей годичных колец. От заболони ядро отгорожено тёмной каёмкой.

Источником возникновения порока являются:

Ложное ядро портит наружный вид изделия и уменьшает возможность лёгкого загиба. Ядро устойчиво к гниению.

В районе сердцевины может сформироваться несколько прилегающих годичных слоёв, схожих с заболонью по цвету и иным свойствам. Внутренняя заболонь появляется из-за нарушения естественной деятельности клеток, вызванное морозами.

У некоторых деревьев из-за повреждения структуры, влияния химических факторов, грибковых заболеваний и засилья насекомых появляются небольшие темноокрашенные зоны на древесине.

Пятнистость особого воздействия на какие — либо свойства не оказывает.

В круглых лесоматериалах существование сердцевины — обычное свойство и явление неотвратимое. Сердцевина значительно снижает прочность деталей с небольшим сечением. В крупных распиленных заготовках нахождение сердцевины нежелательный фактор. Сердцевина быстро поддаётся загниванию.

Это — беспорядочное месторасположение сердцевины, препятствующее массовому использованию материалов. Данное свойство относится к отрицательным показателям.

В раскроенном материале можно обнаружить две сердцевины. Каждая сердцевина обладает своими личными годичными слоями. По краю ствола обе сердцевины окружены единой системой годичных слоёв.

Выпиленные заготовки с двойной сердцевиной, чаще и посильнее коробятся, кроме того могут возникнуть трещины.

Это — внешнее частичное омертвение ствола. Данный порок появляется в результате содранной коры, солнечного ожога или перегревания коры. Сухобокость нарушает форму деревьев, образует завитушки, ухудшает цельность древесины и понижает выход.

Это — заживающая или уже зажившая рана.

Прорость разрушает цельность древесины, что влечёт за собой кривизну и искажение годичных слоёв.

Рана, появившаяся в результате грибковых заболеваний и присутствия бактерий.

При раке меняется правильная форма деревьев.

Необычные отложения в древесине

Это — щедро напитанный смолой участок древесины, образованный после ранения хвойного дерева.

Засмолок имеет незначительную влагопроницаемость и лёгкое впитывание воды. Положительным свойством такой древесины является увеличенная стойкость к гнили, но при этом — плохо поддаётся отделке и приклеиванию.

Это — углубление в глубине годичных слоёв, наполненное смолой.

Стекающая из полости смола затрудняет отделку и склейку заготовок. Такое свойство лесоматериалов считается отрицательным.

Водослойная древесина различается от здоровой увеличенной усушкой и разбуханием. Свойство характеризуется как отрицательное.

Диэлектрические свойства древесины

Древесина может выражать диэлектрические свойства, характеризующиеся двумя признаками.

Первый – магнитная пропускаемость.

Второй – поглощение релаксации дипольной поляризации и превращение её в тепло.

Физические и механические свойства древесины

К физическим свойствам древесины относятся: ее внешний вид, характеризуемый цветом и текстурой, запах, гигроскопичность, вес, теплопроводность, звукопроводность и электропроводность. Механические свойства характеризуют способность древесины сопротивляться воздействию внешних СИЛ. К ним относятся: прочность, твердость, упругость, гибкость, хрупкость, раскалываемость и гвоздимость.

Цвет древесины является одним из признаков, по которым может быть определена порода дерева. Различные породы, кроме того, имеют неодинаковую яркость окраски древесины разных частей ствола; так, например, ствол березы или липы в разрезе имеет более или менее однородную окраску, тогда как сосна или дуб отличаются ярко выраженной более темной окраской ядра.

По цвету древесины можно судить о ее состоянии; так, например, появление на древесине бурых или синих пятен и полос свидетельствует о наличии грибковых заболеваний.

Текстурой древесины называют характерный и свойственный лишь данной породе рисунок на поверхности продольного или поперечного разреза ствола.

Для древесины, используемой в плотничных работах, цвет и текстура дерева не имеют практического значения, однако в столярно-отделочных работах, при изготовлении мебели, паркета и т. п. древесина с красивыми цветом и текстурой ценится высоко.

Запах древесины также является отличительной особенностью породы дерева; так, например, характерный, присущий только этим породам дерева запах имеет древесина сосны, березы, осины. Кроме того, изменение запаха древесины является одним из признаков появления грибов. Запах древесины важен для лесоматериалов, идущих на изготовление тары для пищевых и косметических товаров.

Гигроскопичностью называется способность материала легко поглощать влагу из воздуха и отдавать ее в сухую воздушную среду. Древесина является пористым материалом: общий объем пор для разных пород составляет от 30 до 80% объема древесины, причем величина и форма пор различны. Вследствие большой пористости гигроскопичность древесины велика.

Это часто является причиной деформации изделий (коробления, появления трещин и т. п.). Поэтому стремятся понизить гигроскопичность древесины путем окрашивания поверхностей изделий масляной краской, лаком, эмалями и другими негигроскопичными составами. Следует иметь в виду, что покрытие древесины нужно периодически повторять, так как защитная способность покрытий с течением времени уменьшается.

Влажностью называется степень насыщенности материала влагой. Вследствие пористости и гигроскопичности древесины влажность ее может колебаться в значительных пределах. Влажность понижает прочность древесины, повышает ее способность к загниванию и др. Поэтому использовать для изготовления деревянных наземных конструкций древесину, имеющую влажность выше 25%, запрещается. Для определения влажности древесины образец ее высушивают до постоянного веса, определяют вес испарившейся воды, делят эту величину на вес высушенного образца и умножают на 100. Если образец до высушивания весил 230 г, а после высушивания 200 г, то влажность его будет: Влажность, определенная таким путем, носит название абсолютной в отличие от относительной влажности, определяемой путем деления потери веса на вес влажного образца.

По степени влажности древесину различают

С изменением влажности древесины связаны ее усушка, разбухание, коробление и растрескивание.Усушкой древесины называется уменьшение ее размеров при высыхании, а разбуханием — увеличение размеров при увлажнении. Усушка и разбухание древесины при изменении влажности объясняются тем, что при уменьшении или увеличении количества влаги внутри клеток их стенки сближаются или отдаляются друг от друга. Вследствие волокнистого строения древесины и более плотного расположения клеток вдоль волокон, чем поперек их, изменения размеров образца неодинаковы в различных направлениях.

В результате неодинаковой усушки древесины в радиальном и тангентальном направлениях, а также из-за неравномерности высыхания возникает коробление и растрескивание древесины.

На рис. 2, а показано, в каких направлениях меняются после сушки размеры и формы заготовок, выпиленных из разных частей ствола.

Смотрите также:   Холодный асфальтобетон

Так как усушка в тангентальном направлении больше, чем в радиальном, то боковые края досок стремятся подняться в сторону выпуклости годичных слоев, следовательно, выпуклость доски при короблении всегда будет обращена в сторону сердцевины. Срединная доска не коробится, но по краям становится тоньше. Широкие доски коробятся больше, чем узкие. Так как в большинстве случаев волокна в дереве не параллельны оси ствола, доски могут перекашиваться винтообразно; это явление носит название крыловатости, или продольного коробления (рис. 2, б). При быстром испарении влаги с поверхности бревна, доски или бруска наружный слой уменьшается в объеме. При этом сближению клеток мешают прилегающие сырые внутренние слои, в результате чего происходит разрыв или растрескивание древесины. Трещины обычно расположены в радиальном направлении. Наибольшее количество радиальных трещин наблюдается в торцах бревна, доски или бруса, так как через торцы происходит наиболее быстрое испарение влаги.

Усушка и связанные с ней коробление и растрескивание мешают правильному использованию древесины при изготовлении деревянных конструкций. Изменение размеров элементов деревянных конструкций вследствие усушки может нарушить нормальную их работу, передачу и распределение усилий, а появившиеся трещины — понизить прочность конструкций. Поэтому необходимо принимать меры к уменьшению деформаций древесины, связанных с усушкой, и к предупреждению их последствий.

В первую очередь к таким мерам относится применение древесины с влажностью, соответствующей будущим условиям работы изделий из нее. Так, например, для деревянных свай следует применять сырой лес, для наружных конструкций — воздушно-сухую древесину, для изделий, находящихся внутри помещений, — комнатно-сухую и т. д. Большое значение имеет также правильная сушка древесины.

При изготовлении деревянных конструкций и изделий также следует принимать ряд мер, например: использовать для обшивки стен более узкие доски; при настилке дощатых полов прибивать вначале не все доски, а каждую пятую и лишь nocлe окончательного высыхания их сплачивать и прибивать все; для уменьшения коробления плоскостей-из досок соединять последние в шпунт и гребень, а смежные доски в щитах располагать сердцевинной частью в разные стороны.

Удельный вес древесины — это отношение веса твердого вещества древесины (без пустот и пор) к весу воды, взятой в том же объеме. Он почти одинаков для всех пород и равен в среднем 1,55 г/см3. Это значит, что твердое вещество древесины более чем в 1,5 раза тяжелее воды. Однако благодаря пористой структуре почти всякое дерево легче воды, т. е. имеет объемный вес меньше единицы. Объемным весом называется отношение веса древесины к весу воды (при 4°), взятой в объеме древесины в естественном состоянии вместе с заключенными в ней порами.

Объемный вес древесины зависит от ряда причин и в первую очередь от ее строения: чем толще оболочки клеток и чем меньше их внутренние полости, тем выше объемный вес древесины. Поэтому объемный вес служит косвенным показателем прочности и других механических свойств древесины.

Так как растущее дерево является живым организмом, то даже для одной и той же породы объемный вес может колебаться в довольно значительных пределах, в зависимости от условий роста и развития дерева. Кроме того, объемный вес древесины зависит и от части ствола, откуда взят образец. Поэтому для оценки объемного веса принимают обычно средний объемный вес древесины.

Говоря об объемном весе древесины, всегда необходимо указывать, к какой влажности он относится, вследствие того, что содержание влаги может доходить до 100% и более по отношению к весу сухой древесины.

В табл. 1 приведены данные о среднем объемном весе наиболее распространенных в строительстве пород деревьев (объемный вес дан при влажности 15%).

Теплопроводностью называется способность материала пропускать тепло. Теплопроводность древесины сравнительно низка. Это объясняется ее большой пористостью, волокнистым строением и замкнутостью пор.

Древесина проводит тепло примерно втрое хуже, чем кирпич, что дает возможность делать деревянные стены, например, в средних районах СССР, толщиной 220 мм, тогда как толщина кирпичных стен в этих же условиях должна быть 640 мм (2/з кирпича).

Теплопроводность древесины зависит от ее влажности, объемного веса, породы и температуры воздуха. Более плотная и влажная древесина лучше проводит тепло, чем менее плотная и сухая. Теплопроводность зависит также от направления, в котором передается тепло; теплопроводность древесины вдоль волокон примерно в 1,8 раза больше, чем поперек волокон. Это следует учитывать, например, при выпуске наружу торцов балок в зданиях с рублеными бревенчатыми стенами.

Звукопроводностью называется способность материала проводить звук. Звукопроводность древесины довольно значительна. Это необходимо учитывать при устройстве перегородок, междуэтажных перекрытий и других конструкций, к которым предъявляются требования звукоизоляции. Поэтому приходится прибегать к дополнительным мерам звукоизоляции, например засыпке шлаком, обивке войлоком и т. п.

Электропроводность — это способность материала проводить электрический ток. Практически сухая древесина электрического тока не проводит и в ряде случаев может использоваться как электроизоляционный материал. Однако в условиях строительства мокрые и загрязненные раствором и землей доски и брусья являются проводниками тока. Это необходимо учитывать при устройстве электропроводки и при эксплуатации приводимых в действие электродвигателями машин и инструментов.

Прочностью материала называется способность его сопротивляться внешним воздействиям. В зависимости от направления и характера приложения нагрузок деревянные элементы могут работать на сжатие, изгиб, растяжение, скалывание и перерезание.

На сжатие работают сваи, колонны, стойки и другие элементы. В зависимости от направления усилия по отношению к направлению волокон древесины различают сжатие вдоль волокон (рис. 3, а) и поперек волокон (рис. 3, б).

Сопротивляемость древесины сжатию поперек волокон в 5-10 раз меньше, чем вдоль волокон.

Сопротивление древесины на изгиб достаточно высоко. Это дает возможность широко использовать в строительстве, в том числе в ответственных сооружениях, деревянные элементы, работающие на изгиб (балки, прогоны, стропила, мостовые брусья и др.).

При работе на изгиб (рис. 4, а) нижние волокна балки подвергаются растяжению, а верхние — сжатию.

Сопротивление древесины растяжению вдоль волокон довольно высоко, но меняется для одной и той же породы в значительных пределах, что связано со строением древесины, длиной волокон, углом их наклона по. отношению к направлению действующей силы и др.

На растяжение вдоль волокон работают такие элементы деревянных конструкций, как затяжка висячих стропил (рис. 4, б).

Сопротивление растяжению поперек волокон у древесины незначительно и составляет около 2-5% прочности на растяжение вдоль волокон. В строительных конструкциях древесина на растяжение поперек волокон, как правило, не работает.

Скалывание древесины имеет место при работе соединений на шпонках. Различают скалывание вдоль волокон (рис. 5, а), когда внешние силы, действуя параллельно волокнам, стремятся переместить одну их часть относительно другой по длине волокон, и скалывание поперек волокон, когда внешние силы, направленные перпендикулярно волокнам, стремятся переместить одну часть их относительно другой в плоскости, параллельной волокнам (рис. 5, б).

Скалывание, при котором внешние силы, направленные перпендикулярно волокнам, стремятся перерезать последние перпендикулярно их длине, называется перерезанием (рис. 5, в).

На скалывание вдоль волокон работают, например, элементы конструкций, соединяемые на деревянных призматических шпонках (см. рис. 121). Шпонки же в подобных конструкциях работают на скалывание поперек волокон. Примером элементов, работающих на перерезание, могут служить пластинчатые нагели, применяемые в составных по высоте балках (см. рис. 127).

Наибольшей сопротивляемостью Обладает древесина при работе на перерезание; в этом случае приходится перерезать волокна древесины, тогда как при скалывании вдоль и поперек волокон необходимо лишь преодолеть сцепление между ними, и механические свойства древесины характеризуются в первую очередь пределом прочности.

В табл. 2 приведена средняя прочность древесины основных пород. На прочность древесины большое влияние оказывает ее влажность. Считают, что повышение влажности древесины на 1% (в пределах от 8 до 23%) понижает сопротивление изгибу и сжатию на 4-5%.

В значительной мере на прочность древесины влияют сучки, трещины, неправильное расположение волокон в дереве и др. Снижение прочности древесины по этим причинам может достигать 50-60% и больше.

Твердостью называется способность материала сопротивляться проникновению в него твердых тел, например режущих инструментов. Твердость древесины зависит от структуры волокон и толщины клеток древесины. Как правило, более плотные и тяжелые породы являются и более твердыми. Твердость древесины резко понижается при увеличении ее влажности.К твердым породам относятся дуб, клен, ясень, лиственница. Наиболее мягкие породы — липа и осина. В целом древесину можно отнести к мягким строительным материалам, хорошо поддающимся механической обработке.

Твердость древесины имеет большое значение для деталей, работающих на сжатие. Чем тверже древесина, тем меньше ока подвержена истиранию, что важно при устройстве полов. Однако излишняя твердость затрудняет обработку древесины.

Упругостью материала называется способность его восстанавливать первоначальную форму после прекращения действия нагрузки, если эта нагрузка не достигла определенного предела.

Древесина обладает довольно большой упругостью, которая увеличивается по мере уменьшения влажности древесины.

Гибкость древесины может быть увеличена путем ее пропаривания или проваривания. Однако следует иметь в виду, что после пропаривания прочность древесины понижается. Сырое свежесрубленное дерево можно сделать более гибким путем простого нагревания.

Xрупкость — это свойство, противоположное гибкости. Из числа распространенных в строительстве пород деревьев наиболее хрупкой древесиной обладают ель и сосна. Хрупкость древесины надо учитывать главным образом при устройстве конструкций, подвергающихся ударным нагрузкам.

Pаскалываемость — это способность материала раскалываться под действием клина. В связи с волокнистой структурой древесина обладает большой раскалываемостью, что имеет практическое значение при получении колотых материалов (кровельной и штукатурной драни, колотой клепки и т. п.) и облегчает обработку древесины топором, например при отеске балок.Раскалываемость зависит от направления волокон древесины, твердости, влажности ее, наличия сучков и других причин.

Смотрите также:   С каким валиком работать?

Хвойные породы, дуб и осина раскалываются легко; береза и вяз — значительно труднее. При увеличении влажности раскалываемость хвойных пород увеличивается, а лиственных уменьшается.

Гвоздимостью называется способность материала удерживать металлические предметы (гвозди, костыли и шурупы).Забиваемый в древесину гвоздь раздвигает волокна и частично перерезает их. Благодаря упругости волокон гвоздь зажимается в древесине и для его вытаскивания нужно затратить определенное усилие, величина которого зависит от породы дерева, его плотности и влажности,- а также от направления гвоздя по отношению к направлению волокон.

Древесина твердых пород обладает большей гвоздимостью, чем мягких. Забить гвоздь во влажную древесину легче, чем в сухую, но после высыхания ее гвоздь будет держаться слабо, так как уменьшится его трение о волокна. Гвоздь, забитый в торец дерева параллельно волокнам, легче извлечь (примерно на 25%), чем гвоздь, забитый перпендикулярно волокнам. При забивке гвоздей слишком близко один от другого возникает опасность раскалывания древесины, поэтому величина расстояния между гвоздями нормируется. В ряде случаев перед забивкой гвоздей большого диаметра в древесине, особенно твердых пород, просверливают отверстия.

Свойства древесины — американские стандарты

Прочность древесины

Показатель прочности древесины представлен в двух группах: для не высушенной древесины (S1-S7) и высушенной (SD1-SD8), которые соответствуют AS 2878 (австралийский стандарт). S1 и SD1 дают самую высокую прочность и жесткость, в то время как S7 и SD8 — самую низкую.

Стандартная плотность древесины

Для определения плотности высушенной древесины за основу берут 12% влажность. Однако показатели плотности не высушенной древесины приблизительны, поскольку зависят от влажности древесины во время измерения. Плотность измеряется в кг/ м³.

Соединение древесины

Соединение – классификация прочности видов древесины в конструкции соединения. Значения варьируются от 1 (очень высокая прочность) до 6 (очень низкая прочность).

Цвет древесины

Цвет высушенных твёрдых пород древесины может изменяться между видами и часто внутри вида. Представленная информация должна использоваться только как общее руководство. В большинстве случаев, цвет заболонь имеет цвет либо светлых оттенков сердцевины, либо белый/кремовый.

Предел прочности при кручении (высушенной древесины)

Предел прочности при кручении – мера максимального напряжения, которое может выдержать древесина при медленной и непрерывной нагрузке. Измеряется в МПа (мегапаскаль).

Модуль упругости (высушенной) древесины

Модуль упругости — имеет значение при определении прогиба балки под нагрузкой, чем больше жесткость, тем меньше прогиб. Измеряется в ГПа (гигапаскаль).

Максимальная прочность при сжатии (высушенная) древесины

Прочность при сжатии – способность древесины выдерживать нагрузку поперек волокон. Измеряется в МПа (мегапаскаль).

Прочность (высушенная) древесины

Измеряет возможность древесины выдерживать удары; синоним ударной вязкости. Измеряется в Нм (ньютонметр).

Твёрдость (не высушенная)

Показатель относится к тесту твёрдости Янка и измеряет сопротивление древесины механическим повреждениям.

Стойкость древесины

Стойкость определяется внутренней устойчивостью древесины к процессу гниения или разрушения насекомыми и ли морскими древоточцами. На стойкость проверяются только твёрдые породы древесины. Шкала с показателем от низкого до высокого (4 класс стойкости – низкая; 1 класс – высокая) приспособлена к стойкости в земле и над ней.

Стойкость древесины к воздействию морских древоточцев

Указывает, является ли вид устойчив (R) или не устойчивы (NR) к разрушению морскими древоточцами.

Огнестойкость, НПБ — Воспламеняемость древесины

Определяет склонность материала к воспламенению, измеряется по шкале от 0 до 20. Индекс 0 указывает, что материал не воспламеняется в течение 20 минут, которые занимает тест. А индекс 20 означает, что материал воспламеняется на первой минуте.

НПБ – Индекс распространения пламени древесины

Cклонность материала к быстрому горению и распространению пламени по шкале от 0 до 10, где 0 означает, что материал не вызывает пламени достигающее потолка, и 10 показывает, что материал может вызвать пожар, достигающий потолка комнаты в течение 10 секунд от момента возгорания.

НПБ — Коэффициент дымообразования древесины

Показатель концентрации дыма (измеряется оптической плотностью), который выделяют материалы при горении. Показатель основан на условной шкале от 0 до 10. Чем выше индекс, тем больше риск возникновения дыма.

Природные пожароустойчивые породы древесины – те, которые имеют внутренние пожароустойчивые свойства. Некоторые виды были протестированы, а ряд других находится в процессе испытания. Измеряется уровень интенсивности пожара (Bushfire Attack level — BAL). Some species have been tested and a number are in the process of being tested and are measured by Bushfire Attack level (BAL).

Стойкость древесины к воздействию древогрыза указывает на то, подвержена ли древесина или нет воздействию древогрыза.

Стойкость древесины к повреждению термитами указывает на то, устойчива ли или не древесина к термитам.

Напряжение древесины

Напряжение древесины — согласно АС 1720 (австралийский стандарт по использованию деревянных конструкций), напряжение – классификация древесины для строительных целей посредством специального станка или по внешнему виду. Степень напряжения показывает основное рабочее напряжение и жёсткость, которые нужно учитывать при проектировании строительных конструкций. Измеряется в МПа (мегапаскалях).

Ударостойкость древесины

Ударостойкость – способность древесины поглощать энергию при разрушении. Определяется методом испытания по Изоду и измеряется в Дж (джоуль).

Огнестойкость, зона тушения

Это значение определяется объемом дыма в расчёте на рассевание массы тестируемого образца в процессе «Тестирования на коническом калориметре» согласно АС/НЗС 3837 (австралийский и новозеландский стандарт по пожарной безопасности).

От: Depor,   —

Ударная вязкость древесины – это ее способность поглощать усилия (работу) при ударе без разрушения. Чем больше величина работы, необходимой для излома образца, тем выше его вязкость. Ударную вязкость определяют по формуле:

A = Q/b х h, Дж/см 2,

где Q – работа, затрачиваемая на излом образца, Дж;

b и h – ширина и высота образца.

Твердость древесины – это ее способность сопротивляться вдавливанию тела из более твердого материала – стального пуансона с полусферическим наконечником радиусом r = = 5,64 мм на глубину 5,64 мм. При этом в конце нагружения по шкале силоизмерителя машины отсчитывают нагрузку Р. После испытания в древесине остается отпечаток площадью 100 мм 2. Статическую твердость образца определяют в Н/мм по формуле:

Н = Р / ? ? r2,

где ? ? r2 – площадь отпечатка в древесине при вдавливании в нее полусферы радиусом r, мм.

Если имеет место раскалывание образцов в процессе испытаний, то пуансон вдавливают на меньшую глубину – 2,82 мм, а твердость определяют по формуле:

Н = 4Р / (3? ? r2).

Все породы по твердости торцовой поверхности делят на три группы: мягкие – твердостью 40 Н/мм 2 и меньше, твердые – 41–80 Н/мм 2 и очень твердые – более 80 Н/мм 2.

Износостойкость древесины характеризует ее способность сопротивляться износу при трении о поверхность абразивных элементов или микронеровностей более твердого тела. При испытании на истирание создают условия, которые имитируют реальный процесс истирания древесины, используемой для полов, лестниц, настилов. Истирания производят на специальной машине. При этом показатель истирания t вычисляют в мм по формуле:

t = h ? (m1 – m2) / m1,

где h – высота образца до истирания, мм;

m 1 и m 2 – масса образца соответственно до и после испытания, г.

Удельное сопротивление выдергиванию гвоздя или шурупа определяется по формуле:

Руд. = Рmax / l (Н/мм),

где Pmax – максимальная нагрузка при выдергивании гвоздей или шурупов;

l – длина забивки гвоздя или ввинчивания шурупа. Способность древесины удерживать крепежные элементы зависит от ее породы, плотности и влажности. Сопротивление выдергиванию гвоздей, забитых в радиальном и тангенциальном направлениях, примерно одинаковое, но оно выше, чем при забивании гвоздей в торец образца.

Способность древесины к гнутью – наилучшая у бука, дуба, ясеня, хуже – у хвойных пород. Для улучшения податливости древесины перед гнутьем ее пропаривают, затем после гнутья охлаждают и сушат в зафиксированном состоянии, в результате чего она приобретает стабильную изогнутую форму.

Способность древесины раскалываться – это процесс разделения ее вдоль волокон под действием нагрузки, передаваемой на клин. Это является отрицательным свойством древесины при забивании гвоздей близко от кромки, а также костылей, шурупов при ввинчивании, но положительным – при колке дров или заготовке колотых сортиментов.

Технологические способы хищения

5.3. Технологические способы хищения
5.3.1. Подключение нагрузки к безучетным питающим электросетямПитающие (магистральные) и потребительские (распределительные) электросети разделены границей балансовой принадлежности, представляющей собой линию раздела объектов

5. Технологические свойства сплавов
Под технологическими свойствами металлов и сплавов понимают способность металла подвергаться различным видам обработки. К технологическим свойствам металлов и сплавов относятся: литейные, ковкость, или деформируемость, в горячем и

ТЕХНОЛОГИЧЕСКИЕ ЭНЕРГОУСТАНОВКИ

10. ТЕХНОЛОГИЧЕСКИЕ ЭНЕРГОУСТАНОВКИ

10.1. Теплообменные аппараты

Технические требования
Вопрос 365. Какими устройствами оборудуется каждый пароводяной подогреватель?Ответ. Оборудуется конденсатоотводчиком или регулятором уровня для отвода конденсата, штуцерами с

10. ТЕХНОЛОГИЧЕСКИЕ ЭНЕРГОУСТАНОВКИ
10.1. Теплообменные аппаратыТехнические требования 10.1.1. Каждый пароводяной подогреватель оборудуется конденсатоотводчиком или регулятором уровня для отвода конденсата, штуцерами с запорной арматурой для выпуска воздуха и спуска

Технологические допуски

3.8.5. Технологические допуски
Качество изделий, конструкций, материалов, применяемых при сооружении линий электропередачи, определяется их геометрической точностью и точностью выполнения технологических процессов. Критерием качества изделий и материалов являются

10. ТЕХНОЛОГИЧЕСКИЕ ЭНЕРГОУСТАНОВКИ
10.1. Теплообменные аппаратыТехнические требования10.1.1. Каждый пароводяной подогреватель оборудуется конденсатоотводчиком или регулятором уровня для отвода конденсата, штуцерами с запорной арматурой для выпуска воздуха и спуска воды

Оцените статью
БРАВО